356 research outputs found

    Aspects of Quantum Fluctuations under Time-dependent External Influences

    Get PDF
    The vacuum of quantum field theory is not empty space but filled with quantum vacuum fluctuations, which give rise to many intriguing effects. The first part of this Thesis addresses cosmic inflation, where the quantum fluctuations of the inflaton field freeze and get amplified in the expanding universe. Afterwards, we turn our attention towards Bose-Einstein condensates, a laboratory system. Since most of our calculations are performed using a mean-field expansion, we will study the accuracy of a finite-range interaction potential onto such an expansion. Exploiting the universality of quantum fluctuations, several aspects of cosmic inflation will be identified in ballistically expanding Bose-Einstein condensates. The effective action technique for calculating the quantum backreaction will be scrutinized. Finally, we consider dynamic quantum phase transitions in the last part of this Thesis. To this end two specific scenarios will be investigated: firstly, the structure formation during the superfluid to Mott-insulator transition in the Bose-Hubbard model; and secondly, the formation of spin domains as a two-dimensional spin-one Bose gas is quenched from the (polar) paramagnetic to the (planar) ferromagnetic phase. During this quench, the symmetry of the ground state is spontaneously broken and vortices (topological defects) form

    O(N) symmetry-breaking quantum quench: Topological defects versus quasiparticles

    Full text link
    We present an analytical derivation of the winding number counting topological defects created by an O(N) symmetry-breaking quantum quench in N spatial dimensions. Our approach is universal in the sense that we do not employ any approximations apart from the large-NN limit. The final result is nonperturbative in N, i.e., it cannot be obtained by %the usual an expansion in 1/N, and we obtain far less topological defects than quasiparticle excitations, in sharp distinction to previous, low-dimensional investigations.Comment: 6 pages of RevTex4-1, 1 figure; to be published in Physical Review

    Principled Design and Implementation of Steerable Detectors

    Full text link
    We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown position and orientation. We propose a continuous-domain additive image model, where the analyzed image is the sum of the template and an isotropic background signal with self-similar isotropic power-spectrum. The method is able to learn an optimal steerable filter fulfilling the SNR criterion based on one single template and background pair, that therefore strongly responds to the template, while optimally decoupling from the background model. The proposed filter then allows for a fast detection process, with the unknown orientation estimation through the use of steerability properties. In practice, the implementation requires to discretize the continuous-domain formulation on polar grids, which is performed using radial B-splines. We demonstrate the practical usefulness of our method on a variety of template approximation and pattern detection experiments

    A simple operational interpretation of the fidelity

    Get PDF
    This note presents a corollary to Uhlmann's theorem which provides a simple operational interpretation for the fidelity of mixed states.Comment: 1 pag

    Effect of fluctuations on the superfluid-supersolid phase transition on the lattice

    Full text link
    We derive a controlled expansion into mean field plus fluctuations for the extended Bose-Hubbard model, involving interactions with many neighbors on an arbitrary periodic lattice, and study the superfluid-supersolid phase transition. Near the critical point, the impact of (thermal and quantum) fluctuations on top of the mean field grows, which entails striking effects, such as negative superfluid densities and thermodynamical instability of the superfluid phase -- earlier as expected from mean-field dynamics. We also predict the existence of long-lived "supercooled" states with anomalously large quantum fluctuations.Comment: 5 pages of RevTex4; as published in Physical Review

    Bogoliubov theory of quantum correlations in the time-dependent Bose-Hubbard model

    Full text link
    By means of an adapted mean-field expansion for large fillings n≫1n\gg1, we study the evolution of quantum fluctuations in the time-dependent Bose-Hubbard model, starting in the superfluid state and approaching the Mott phase by decreasing the tunneling rate or increasing the interaction strength in time. For experimentally relevant cases, we derive analytical results for the temporal behavior of the number and phase fluctuations, respectively. This allows us to calculate the growth of the quantum depletion and the decay of off-diagonal long-range order. We estimate the conditions for the observability of the time dependence in the correlation functions in the experimental setups with external trapping present. Finally, we discuss the analogy to quantum effects in the early universe during the inflationary epoch.Comment: 11 pages of RevTex4, 2 figures; significantly extended, with several analytically solvable cases added, to appear in Physical Review

    Heat Pump with Two Heat Sources on Different Temperature Levels

    Get PDF
    Aim of the project is the development of a new heat pump system with economizing that is able to improve the heating performance using two or more different heat sources. These heat sources preferably on different temperature levels are incorporated in the system with minimal loss of exergy, by adding the heat at different pressure levels. Applications are i.e. buildings with heat pump and a solar thermal collector. While solar thermal systems can be used for heating and domestic hot water in summer, they fail to produce sufficient temperatures in fall and spring. When the solar collectors are also connected to the heat pump, they are able to supply temperatures higher than ambient at a medium temperature level. This heat at medium temperature can be used to improve the efficiency of an air source heat pump using the here proposed cycle. Existing systems using two heat sources are either inefficient or need large amounts of waste heat, while the proposed cycle can also use very small amounts of waste heat up to 40% of the total heat input. Other heat sources like process waste heat or exhaust air from a building are possible. Depending on the amount of waste heat and the temperature level of the heat pump cycle, efficiency and heating capacity improvements of 20-30% are possible. Oil management and control of the system are the main challenges when implementing it in the field. The paper will present the idea of the new cycle and its application in heat pump and refrigeration systems together with simulation results that show the effects of different parameters

    Abrasive Waterjet Turning of High Performance Materials

    Get PDF
    AbstractThe cutting of high performance materials requires specific machine tools and cutting tools. The wear resistance of cutting tools is important for turning of hypereutectic aluminium silicon or titanium aluminide alloys. Abrasive waterjet turning has been shown to be a suitable cutting process for these challenging materials. The tool life time of at least 10hours combined with a material removal rate of up to 0.8cm3/min and low process temperatures give this cutting technology a very high potential. Furthermore the material close to the cutting surface is less modified compared to conventional rough turning. The same effects are of particular interest with regard to the functional capability of waterjet turned Îł-TiAl-alloys

    Same data, different conclusions:Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis

    Get PDF
    In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed
    • …
    corecore